Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
J Hazard Mater ; 471: 134280, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636233

RESUMO

Earthworms play a pivotal role in the elimination of fecal coliforms during vermicomposting of fruit and vegetable waste (FVWs). However, the specific mechanisms underlying the action of earthworm mucus remain unclear. This study investigated the mechanisms of fecal coliform reduction related to earthworm mucus during FVWs vermicomposting by comparing treatments with and without earthworms. The results show that the secretion of earthworm mucus decreased by 13.93 % during the startup phase, but significantly (P < 0.001) increased by 57.80 % during the degradation phase. Compared to the control without earthworms, vermicomposting led to a significant (P < 0.05) 1.22 -fold increase in the population of active bacteria, with a strong positive correlation between mucus characteristics and dominant bacterial phyla. As the dominant fecal coliforms, Escherichia coli and Klebsiella pneumoniae significantly (P < 0.05) declined by 86.20 % and 93.38 %, respectively, in the vermi-reactor relative to the control. Bacterial dispersal limitation served as a key factor constraining the elimination of E. coli (r = 0.73, P < 0.01) and K. pneumoniae (r = 0.77, P < 0.001) during vermicomposting. This study suggests that earthworm mucus increases the active bacterial abundance and cooperation by weakening the bacterial dispersal limitation, thus intensifying competition and antagonism between fecal coliforms and other bacteria.

2.
Int J Biol Macromol ; 265(Pt 2): 130859, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490389

RESUMO

In this study, crude polysaccharide (LAG-C) and homogeneous arabinogalactan (LAG-W) were isolated from Qinling Larix kaempferi of Shaanxi Province. Bioactivity assays showed that LAG-W and LAG-C enhanced the phagocytic ability, NO secretion, acid phosphatase activity, and cytokine production (IL-6, IL-1ß, and TNF-α) of RAW264.7 macrophages. Notably, LAG-W exhibited a significantly stronger immunomodulatory effect than LAG-C. The primary structure of LAG-W was characterised by chemical methods (monosaccharide composition, methylation analysis, and alkali treatment) and spectroscopic techniques (gas chromatography-mass spectrometry, high-performance liquid chromatography-mass spectrometry, and 1D/2D nuclear magnetic resonance). LAG-W was identified as a 22.08 kilodaltons (kDa) neutral polysaccharide composed of arabinose and galactose at a 1:7.5 molar ratio. Its backbone consisted of repeated →3)-ß-Galp-(1→ residues. Side chains, connected at the O-6 position, were mainly composed of T-ß-Galp-(1→ and T-ß-Galp-(1→6)-ß-Galp-(1→ residues. And it also contained small amounts of T-ß-Arap-(1→, T-α-Araf-(1→6)-ß-Galp-(1→6)-ß-Galp-(1→, and T-α-Araf-(1→3)-α-Araf-(1→6)-ß-Galp-(1→ residues. By structurally and functionally characterising L. kaempferi polysaccharides, this study opens the way for the valorisation of this species.


Assuntos
Larix , Galactanos/farmacologia , Galactanos/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Espectroscopia de Ressonância Magnética
3.
BMC Cardiovasc Disord ; 24(1): 88, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310264

RESUMO

BACKGROUND: Myocardial injury after noncardiac surgery (MINS) is one of the most common complications associated with postoperative adverse cardiovascular outcomes and mortality. However, MINS often fails to be timely diagnosed due to the absence of clinical symptoms and limited diagnostic methods. The metabolomic analysis might be an efficient way to discover new biomarkers of MINS. Characterizing the metabolomic features of MINS patients may provide new insight into the diagnosis of MINS. METHODS: In this study, serum samples from 20 matched patients with or without MINS (n = 10 per group) were subjected to untargeted metabolomics analysis to investigate comprehensive metabolic information. Differential metabolites were identified, and the enriched metabolic pathway was determined based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. RESULTS: A comprehensive analysis revealed 124 distinct metabolites, predominantly encompassing lipids, amino acids and other compounds. The observed modifications in metabolic pathways in patients with or without MINS showed significant clustering in cholesterol metabolism, aldosterone synthesis and secretion, primary bile acid biosynthesis, as well as cysteine and methionine metabolism. Four specific metabolites (taurocholic acid, L-pyroglutamic acid, taurochenodeoxycholic acid, and pyridoxamine) exhibited promising potential as biomarkers for prognosticating MINS. CONCLUSIONS: This study contributes valuable insights into the metabolomic features of MINS and the discovery of potential biomarkers which may help the early diagnosis of MINS. The identified metabolites and altered pathways offer valuable insights into the molecular underpinnings of MINS, paving the way for improved diagnostic approaches and potential intervention strategies.


Assuntos
Traumatismos Cardíacos , Complicações Pós-Operatórias , Humanos , Complicações Pós-Operatórias/diagnóstico , Metabolômica , Biomarcadores , Coração
4.
Carbohydr Polym ; 330: 121882, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368089

RESUMO

Structurally defined arabinogalactan (LBP-3) from Lycium barbarum have effect on improving intestinal barrier function. However, whether its intestinal barrier function depended on the changes of intestinal mucin O-glycans have not been investigated. A dextran sodium sulfate-induced acute colitis mouse model was employed to test prevention and treatment with LBP-3. The intestinal microbiota as well as colonic mucin O-glycan profiles were analyzed. Supplementation with LBP-3 inhibited harmful bacteria, including Desulfovibrionaceae, Enterobacteriaceae, and Helicobacteraceae while significantly increased the abundance of beneficial bacteria (e.g., Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae). Notably, LBP-3 augmented the content of neutral O-glycans by stimulating the fucosylation glycoforms (F1H1N2 and F1H2N2), short-chain sulfated O-glycans (S1F1H1N2, S1H1N2, and S1H2N3), and sialylated medium- and long-chain O-glycans (F1H2N2A1, H2N3A1, and F1H3N2A1). In summary, we report that supplement LBP-3 significantly reduced pathological symptoms, restored the bacterial community, and promoted the expression of O-glycans to successfully prevent and alleviate colitis in a mouse model, especially in the LBP-3 prevention testing group. The underlying mechanism of action was investigated using glycomics to better clarify which the structurally defined LBP-3 were responsible for its beneficial effect against ulcerative colitis and assess its use as a functional food or pharmaceutical supplement.


Assuntos
Colite , Galactanos , Lycium , Camundongos , Animais , Mucinas/metabolismo , Lycium/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Polissacarídeos/efeitos adversos , Bactérias/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
IEEE Trans Med Imaging ; PP2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354077

RESUMO

In cardiac CINE, motion-compensated MR reconstruction (MCMR) is an effective approach to address highly undersampled acquisitions by incorporating motion information between frames. In this work, we propose a novel perspective for addressing the MCMR problem and a more integrated and efficient solution to the MCMR field. Contrary to state-of-the-art (SOTA) MCMR methods which break the original problem into two sub-optimization problems, i.e. motion estimation and reconstruction, we formulate this problem as a single entity with one single optimization. Our approach is unique in that the motion estimation is directly driven by the ultimate goal, reconstruction, but not by the canonical motion-warping loss (similarity measurement between motion-warped images and target images). We align the objectives of motion estimation and reconstruction, eliminating the drawbacks of artifacts-affected motion estimation and therefore error-propagated reconstruction. Further, we can deliver high-quality reconstruction and realistic motion without applying any regularization/smoothness loss terms, circumventing the non-trivial weighting factor tuning. We evaluate our method on two datasets: 1) an in-house acquired 2D CINE dataset for the retrospective study and 2) the public OCMR cardiac dataset for the prospective study. The conducted experiments indicate that the proposed MCMR framework can deliver artifact-free motion estimation and high-quality MR images even for imaging accelerations up to 20x, outperforming SOTA non-MCMR and MCMR methods in both qualitative and quantitative evaluation across all experiments.

6.
Infection ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265608

RESUMO

BACKGROUND AND PURPOSE: The need for dose adjustment of caspofungin in patients with hepatic impairment is controversial, especially for those with Child-Pugh B or C cirrhosis. The purpose of this study was to investigate the safety and efficacy of standard-dose caspofungin administration in Child-Pugh B and C cirrhotic patients in a real-world clinical setting. PATIENTS AND METHODS: The electronic medical records of 258 cirrhotic patients, including 67 Child-Pugh B patients and 191 Child-Pugh C patients, who were treated with standard-dose of caspofungin at the Second Affiliated Hospital of Chongqing Medical University, China, from March 2018 to June 2023 were reviewed retrospectively. The white blood cells (WBC), hepatic, renal and coagulation function results before administration and post administration on days 7, 14 and 21 were collected, and the efficacy was assessed in all patients at the end of caspofungin therapy. RESULTS: Favorable responses were achieved in 137 (53.1%) patients while 34 (13.2%) patients died. We observed that some patients experienced an increase of prothrombin time (PT) or international normalized ratio (INR), or a decrease of WBC, but no exacerbation of hepatic or renal dysfunction were identified and no patient required dose interruption or adjustment because of an adverse drug reaction during treatment with caspofungin. CONCLUSIONS: Standard-dose of caspofungin can be safely and effectively used in patients with Child-Pugh B or C cirrhosis, and we appealed to re-assess the most suitable dosing regimen in this population to avoid a potential subtherapeutic exposure.

7.
Br J Anaesth ; 132(2): 320-333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953203

RESUMO

BACKGROUND: The neural mechanisms underlying sevoflurane-induced loss of consciousness and recovery of consciousness after anaesthesia remain unknown. We investigated whether glutamatergic pedunculopontine tegmental nucleus (PPT) neurones are involved in the regulation of states of consciousness under sevoflurane anaesthesia. METHODS: In vivo fibre photometry combined with electroencephalography (EEG)/electromyography recording was used to record changes in the activity of glutamatergic PPT neurones under sevoflurane anaesthesia. Chemogenetic and cortical EEG recordings were used to explore their roles in the induction of and emergence from sevoflurane anaesthesia. Optogenetic methods combined with EEG recordings were used to explore the roles of glutamatergic PPT neurones and of the PPT-ventral tegmental area pathway in maintenance of anaesthesia. RESULTS: The population activity of glutamatergic PPT neurones was reduced before sevoflurane-induced loss of righting reflex and gradually recovered after return of righting reflex. Chemogenetic inhibition of glutamatergic PPT neurones accelerated induction of anaesthesia (hM4Di-CNO vs mCherry-CNO, 76 [17] vs 121 [27] s, P<0.0001) and delayed emergence from sevoflurane anaesthesia (278 [98] vs 145 [53] s, P<0.0001) but increased sevoflurane sensitivity. Optogenetic stimulation of glutamatergic PPT neurons or of the PPT-ventral tegmental area pathway promoted cortical activation and behavioural emergence during steady-state sevoflurane anaesthesia, reduced the depth of anaesthesia, and caused cortical arousal during sevoflurane-induced EEG burst suppression. CONCLUSIONS: Glutamatergic PPT neurones regulate induction and emergence of sevoflurane anaesthesia.


Assuntos
Núcleo Tegmental Pedunculopontino , Sevoflurano , Inconsciência , Animais , Camundongos , Eletroencefalografia , Neurônios , Sevoflurano/farmacologia , Inconsciência/induzido quimicamente
8.
Med Image Anal ; 91: 103017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924751

RESUMO

In recent years Motion-Compensated MR reconstruction (MCMR) has emerged as a promising approach for cardiac MR (CMR) imaging reconstruction. MCMR estimates cardiac motion and incorporates this information in the reconstruction. However, two obstacles prevent the practical use of MCMR in clinical situations: First, inaccurate motion estimation often leads to inferior CMR reconstruction results. Second, the motion estimation frequently leads to a long processing time for the reconstruction. In this work, we propose a learning-based and unrolled MCMR framework that can perform precise and rapid CMR reconstruction. We achieve accurate reconstruction by developing a joint optimization between the motion estimation and reconstruction, in which a deep learning-based motion estimation framework is unrolled within an iterative optimization procedure. With progressive iterations, a mutually beneficial interaction can be established in which the reconstruction quality is improved with more accurate motion estimation. Further, we propose a groupwise motion estimation framework to speed up the MCMR process. A registration template based on the cardiac sequence average is introduced, while the motion estimation is conducted between the cardiac frames and the template. By applying this framework, cardiac sequence registration can be accomplished with linear time complexity. Experiments on 43 in-house acquired 2D CINE datasets indicate that the proposed unrolled MCMR framework can deliver artifacts-free motion estimation and high-quality CMR reconstruction even for imaging acceleration rates up to 20x. We compare our approach with state-of-the-art reconstruction methods and it outperforms them quantitatively and qualitatively in all adapted metrics across all acceleration rates.


Assuntos
Algoritmos , Imagem Cinética por Ressonância Magnética , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Movimento (Física) , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos
9.
J Agric Food Chem ; 72(1): 670-678, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38135877

RESUMO

Human milk is important for infant growth, and oligosaccharides are one of its main functional nutrients. To enable a systematic comparison of free oligosaccharide and glycoconjugate content in milk from different species, the phenol-sulfuric acid and resorcinol assays were combined to determine the content. Using real samples, the method revealed that human milk contained the highest amount of total, neutral (9.84 ± 0.31 g/L), and sialylated (3.21 ± 0.11 g/L) free oligosaccharides, followed by goat milk, with neutral (0.135 ± 0.015 g/L) and sialylated (0.192 ± 0.016 g/L) free oligosaccharides and at a distance by bovine and yak milk. The highest total glycoconjugate content was detected in yak milk (0.798 ± 0.011 g/L), followed by human, bovine, and goat milk. These findings suggest that goat milk is the best source of free oligosaccharides in infant formula and functional dairy products and yak milk is the best source of glycoconjugates.


Assuntos
Leite Humano , Leite , Lactente , Animais , Bovinos , Humanos , Leite/química , Leite Humano/química , Oligossacarídeos/análise , Glicoconjugados , Fórmulas Infantis/análise , Cabras
10.
BMC Anesthesiol ; 23(1): 410, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087206

RESUMO

BACKGROUND: The use of ultrasound has been reported to be beneficial in challenging neuraxial procedures. The angled probe is responsible for the main limitations of previous ultrasound-assisted techniques. We developed a novel technique for challenging lumbar puncture, aiming to locate the needle entry point which allowed for a horizontal and perpendicular needle trajectory and thereby addressed the drawbacks of earlier ultrasound-assisted techniques. CASE PRESENTATION: Patient 1 was an adult patient with severe scoliosis who underwent a series of intrathecal injections of nusinersen. The preprocedural ultrasound scan revealed a cephalad probe's angulation (relative to the edge of the bed) in the paramedian sagittal oblique view, and then the probe was rotated 90° into a transverse plane and we noted that a rocking maneuver was required to obtain normalized views. Then the shoulders were moved forward to eliminate the need for cephalad angulation of the probe. The degree of rocking was translated to a lateral offset from the midline of the spine through an imaginary lumbar puncture's triangle model, and a needle entry point was marked. The spinal needle was advanced through this marking-point without craniocaudal and lateromedial angulation, and first-pass success was achieved in all eight lumbar punctures. Patient 2 was an elderly patient with ankylosing spondylitis who underwent spinal anesthesia for transurethral resection of the prostate. The patient was positioned anteriorly obliquely to create a vertebral rotation that eliminated medial angulation in the paramedian approach. The procedure succeeded on the first pass. CONCLUSIONS: This ultrasound-assisted paramedian approach with a horizontal and perpendicular needle trajectory may be a promising technique that can help circumvent challenging anatomy. Larger case series and prospective studies are warranted to define its superiority to alternative approaches of lumbar puncture for patients with difficulties.


Assuntos
Raquianestesia , Ressecção Transuretral da Próstata , Masculino , Adulto , Humanos , Idoso , Punção Espinal/métodos , Ultrassonografia de Intervenção/métodos , Coluna Vertebral , Ultrassonografia , Raquianestesia/métodos
11.
Foods ; 12(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37893697

RESUMO

The bioactivities of Ganoderma lucidum, Grifola frondosa, and American ginseng have been extensively studied and documented. However, the effects of their complexes on the structural properties of intestinal microbiota and fecal metabolism remain unclear. Therefore, this paper aims to present a preliminary study to shed light on this aspect. In this study, an immunocompromised mouse model was induced using cyclophosphamide, and Ganoderma lucidum, Grifola frondosa, and American ginseng extract formulation (referred to as JGGA) were administered via gavage to investigate their modulatory effects on gut microbiota and fecal metabolism in mice. The effects of JGGA on immune enhancement were explored using serum test kits, hematoxylin-eosin staining, 16SrDNA high-throughput sequencing, and UHPLC-QE-MS metabolomics. The findings revealed potential mechanisms underlying the immune-enhancing effects of JGGA. Specifically, JGGA administration resulted in an improved body weight, thymic index, splenic index, carbon scavenging ability, hypersensitivity, and cellular inflammatory factor expression levels in mice. Further analysis demonstrated that JGGA reduced the abundance of Firmicutes, Proteobacteria, and Actinobacteria, while increasing the abundance of Bacteroidetes. Additionally, JGGA modulated the levels of 30 fecal metabolites. These results suggest that the immune enhancement observed with JGGA may be attributed to the targeted modulation of gut microbiota and fecal metabolism, thus promoting increased immunity in the body.

12.
Int J Gen Med ; 16: 4235-4248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745137

RESUMO

Background: Nucleolar and spindle-associated protein 1 (NUSAP1) plays key roles in microtubules and chromosomes in normal cells both structurally and functionally. In malignancies, NUSAP1 is frequently dysregulated and mutated. However, the expression profiles and biological functions of NUSAP1 in tumors remain unclear. Methods: NUSAP1 expression in BALB/c mice and human normal or tumor tissues was examined using immunohistochemistry. Kaplan-Meier survival analysis was utilized to assess the prognostic significance of NUSAP1 in tumors, and principal component analysis and co-expression analysis were performed to explore the unique roles of NUSAP1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed with DAVID. The relevance between NUSAP1 and tumor-infiltrating immune cells was investigated using TIMER. A transcriptional regulation network was constructed using data from The Cancer Genome Atlas. Results: NUSAP1 expression levels in various mice tissues were different. Compared with normal tissues, NUSAP1 was strongly expressed in several human tumor tissues. We believe that NUSAP1 distinctly impacts the prognosis of several cancers and plays various roles in thymoma and testicular germ cell tumors. Further, NUSAP1 expression levels were significantly positively associated with diverse infiltrating levels of immune cells, including B cells, CD4+ and CD8+ T cells, dendritic cells, and macrophages, in thymoma. The expression level of NUSAP1 demonstrated strong relevance with various immune markers in thymoma. Finally, the miR-1236-5p-NUSAP1 and TCF3-NUSAP1 network revealed the tumor-promoting role of NUSAP1 and pertinent underlying mechanisms in human liver hepatocellular carcinoma. Conclusion: NUSAP1 may be regarded as a therapeutic target or potential prognostic biomarker for various cancer types.

13.
Respir Res ; 24(1): 214, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644529

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronically progressive fibrotic pulmonary disease characterized by an uncertain etiology, a poor prognosis, and a paucity of efficacious treatment options. Dexmedetomidine (Dex), an anesthetic-sparing alpha-2 adrenoceptor (α2AR) agonist, plays a crucial role in organ injury and fibrosis. However, the underlying mechanisms of IPF remain unknown. METHODS: In our study, the role of Dex in murine pulmonary fibrosis models was determined by Dex injection intraperitoneally in vivo. Fibroblast activation and myofibroblast differentiation were assessed after Dex treatment in vitro. The activation of MAPK pathway and the expression of Adenosine A2B receptor (ADORA2B) were examined in lung myofibroblasts. Moreover, the role of ADORA2B in Dex suppressing myofibroblast differentiation and pulmonary fibrosis was determined using the ADORA2B agonist BAY60-6583. RESULTS: The results revealed that Dex could inhibit Bleo-induced pulmonary fibrosis in mice. In vitro studies revealed that Dex suppressed TGF-ß-mediated MAPK pathway activation and myofibroblast differentiation. Furthermore, Dex inhibits myofibroblast differentiation and pulmonary fibrosis via downregulating ADORA2B expression. CONCLUSIONS: Our findings suggest Dex as a potential therapeutic agent for pulmonary fibrosis. Dex may alleviate lung fibrosis and myofibroblast differentiation through the ADORA2B-mediated MAPK signaling pathway.


Assuntos
Dexmedetomidina , Fibrose Pulmonar Idiopática , Animais , Camundongos , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Receptor A2B de Adenosina/genética , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Fibrose Pulmonar Idiopática/tratamento farmacológico
14.
IEEE Trans Med Imaging ; 42(12): 3540-3554, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37428656

RESUMO

In recent times, model-driven deep learning has evolved an iterative algorithm into a cascade network by replacing the regularizer's first-order information, such as the (sub)gradient or proximal operator, with a network module. This approach offers greater explainability and predictability compared to typical data-driven networks. However, in theory, there is no assurance that a functional regularizer exists whose first-order information matches the substituted network module. This implies that the unrolled network output may not align with the regularization models. Furthermore, there are few established theories that guarantee global convergence and robustness (regularity) of unrolled networks under practical assumptions. To address this gap, we propose a safeguarded methodology for network unrolling. Specifically, for parallel MR imaging, we unroll a zeroth-order algorithm, where the network module serves as a regularizer itself, allowing the network output to be covered by a regularization model. Additionally, inspired by deep equilibrium models, we conduct the unrolled network before backpropagation to converge to a fixed point and then demonstrate that it can tightly approximate the actual MR image. We also prove that the proposed network is robust against noisy interferences if the measurement data contain noise. Finally, numerical experiments indicate that the proposed network consistently outperforms state-of-the-art MRI reconstruction methods, including traditional regularization and unrolled deep learning techniques.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
15.
Life (Basel) ; 13(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37374027

RESUMO

The robust regulation of the cell cycle is critical for the survival and proliferation of bacteria. To gain a comprehensive understanding of the mechanisms regulating the bacterial cell cycle, it is essential to accurately quantify cell-cycle-related parameters and to uncover quantitative relationships. In this paper, we demonstrate that the quantification of cell size parameters using microscopic images can be influenced by software and by the parameter settings used. Remarkably, even if the consistent use of a particular software and specific parameter settings is maintained throughout a study, the type of software and the parameter settings can significantly impact the validation of quantitative relationships, such as the constant-initiation-mass hypothesis. Given these inherent characteristics of microscopic image-based quantification methods, it is recommended that conclusions be cross-validated using independent methods, especially when the conclusions are associated with cell size parameters that were obtained under different conditions. To this end, we presented a flexible workflow for simultaneously quantifying multiple bacterial cell-cycle-related parameters using microscope-independent methods.

16.
Front Immunol ; 14: 1078055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334348

RESUMO

Background: There is still a lack of specific indicators to diagnose idiopathic pulmonary fibrosis (IPF). And the role of immune responses in IPF is elusive. In this study, we aimed to identify hub genes for diagnosing IPF and to explore the immune microenvironment in IPF. Methods: We identified differentially expressed genes (DEGs) between IPF and control lung samples using the GEO database. Combining LASSO regression and SVM-RFE machine learning algorithms, we identified hub genes. Their differential expression were further validated in bleomycin-induced pulmonary fibrosis model mice and a meta-GEO cohort consisting of five merged GEO datasets. Then, we used the hub genes to construct a diagnostic model. All GEO datasets met the inclusion criteria, and verification methods, including ROC curve analysis, calibration curve (CC) analysis, decision curve analysis (DCA) and clinical impact curve (CIC) analysis, were performed to validate the reliability of the model. Through the Cell Type Identification by Estimating Relative Subsets of RNA Transcripts algorithm (CIBERSORT), we analyzed the correlations between infiltrating immune cells and hub genes and the changes in diverse infiltrating immune cells in IPF. Results: A total of 412 DEGs were identified between IPF and healthy control samples, of which 283 were upregulated and 129 were downregulated. Through machine learning, three hub genes (ASPN, SFRP2, SLCO4A1) were screened. We confirmed their differential expression using pulmonary fibrosis model mice evaluated by qPCR, western blotting and immunofluorescence staining and analysis of the meta-GEO cohort. There was a strong correlation between the expression of the three hub genes and neutrophils. Then, we constructed a diagnostic model for diagnosing IPF. The areas under the curve were 1.000 and 0.962 for the training and validation cohorts, respectively. The analysis of other external validation cohorts, as well as the CC analysis, DCA, and CIC analysis, also demonstrated strong agreement. There was also a significant correlation between IPF and infiltrating immune cells. The frequencies of most infiltrating immune cells involved in activating adaptive immune responses were increased in IPF, and a majority of innate immune cells showed reduced frequencies. Conclusion: Our study demonstrated that three hub genes (ASPN, SFRP2, SLCO4A1) were associated with neutrophils, and the model constructed with these genes showed good diagnostic value in IPF. There was a significant correlation between IPF and infiltrating immune cells, indicating the potential role of immune regulation in the pathological process of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Neutrófilos , Animais , Camundongos , Reprodutibilidade dos Testes , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Algoritmos , Bleomicina
17.
J Inflamm Res ; 16: 2503-2519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37337515

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) is a disease with unclear etiology and a poor prognosis. Although the involvement of neutrophils in IPF pathogenesis has been suggested, the exact nature of this relationship remains unclear. Methods: We analyzed data from the Gene Expression Omnibus (GEO) using immune infiltration analysis, weighted gene co-expression network analysis (WGCNA), and consensus cluster analysis. Neutrophil-related genes and hub genes related to neutrophils were identified and differentially expressed between IPF patients and healthy controls. We also validated the expression differences of hub genes in a bleomycin-induced mice model. Results: Immune infiltration analysis revealed a significantly decreased percentage of neutrophils in the lung tissue of IPF patients compared with healthy controls (P<0.001) in both the train and validation sets. Neutrophil-related genes in IPF were identified by WGCNA, and functional enrichment analysis showed that these genes were mainly involved in the cytokine-cytokine receptor interaction pathway and correlated with lung disease, consistent with DEGs between IPF and healthy controls. Eight hub genes related to neutrophils were identified, including MMP16, ARG1, IL1R2, PROK2, MS4A2, PIR, and ZNF436. Consensus cluster analysis revealed a low neutrophil-infiltrating cluster that was correlated with IPF (P<0.001), and a principal component analysis-generated score could distinguish IPF patients from healthy controls, with an area under the curve of 0.930 in the train set and 0.768 in the validation set. We also constructed a diagnostic model using hub genes related to neutrophils, which showed a reliable diagnostic value with an area under the curve of 0.955 in the train set and 0.995 in the validation set. Conclusion: Our findings provide evidence of a low neutrophil-infiltrating characteristic in the IPF microenvironment and identify hub genes related to neutrophils that may serve as diagnostic biomarkers for the disease.

18.
Anesth Analg ; 137(2): 426-439, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37145970

RESUMO

BACKGROUND: Myocardial infarction is a common perioperative complication, and blood flow restoration causes ischemia/reperfusion injury (IRI). Dexmedetomidine (DEX) pretreatment can protect against cardiac IRI, but the mechanism is still insufficiently understood. METHODS: In vivo, myocardial ischemia/reperfusion (30 minutes/120 minutes) was induced via ligation and then reperfusion of the left anterior descending coronary artery (LAD) in mice. Intravenous infusion of 10 µg/kg DEX was performed 20 minutes before ligation. Moreover, the α2-adrenoreceptor antagonist Yohimbine and STAT3 inhibitor Stattic were applied 30 minutes ahead of DEX infusion. In vitro, hypoxia/reoxygenation (H/R) with DEX pretreatment for 1 hour was performed in isolated neonatal rat cardiomyocytes. In addition, Stattic was applied before DEX pretreatment. RESULTS: In the mouse cardiac ischemia/reperfusion model, DEX pretreatment lowered the serum creatine kinase-MB isoenzyme (CK-MB) levels (2.47 ± 0.165 vs 1.55 ± 0.183; P < .0001), downregulated the inflammatory response ( P ≤ .0303), decreased 4-hydroxynonenal (4-HNE) production and cell apoptosis ( P = .0074), and promoted the phosphorylation of STAT3 (4.94 ± 0.690 vs 6.68 ± 0.710, P = .0001), which could be blunted by Yohimbine and Stattic. The bioinformatic analysis of differentially expressed mRNAs further confirmed that STAT3 signaling might be involved in the cardioprotection of DEX. Upon H/R treatment in isolated neonatal rat cardiomyocytes, 5 µM DEX pretreatment improved cell viability ( P = .0005), inhibited reactive oxygen species (ROS) production and calcium overload (both P ≤ .0040), decreased cell apoptosis ( P = .0470), and promoted STAT3 phosphorylation at Tyr705 (0.102 ± 0.0224 vs 0.297 ± 0.0937; P < .0001) and Ser727 (0.586 ± 0.177 vs 0.886 ± 0.0546; P = .0157), which could be abolished by Stattic. CONCLUSIONS: DEX pretreatment protects against myocardial IRI, presumably by promoting STAT3 phosphorylation via the α2-adrenoreceptor in vivo and in vitro.


Assuntos
Dexmedetomidina , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Animais , Camundongos , Ratos , Apoptose , Creatina Quinase Forma MB , Dexmedetomidina/farmacologia , Modelos Animais de Doenças , Hipóxia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio , Transdução de Sinais , Receptores Adrenérgicos alfa
19.
Food Funct ; 14(10): 4752-4762, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37114890

RESUMO

A sedentary lifestyle, unhealthy diet, and antibiotic use among other environmental factors have been associated with an increased incidence of metabolic disorders and inflammation, as well as gut dysbiosis. Pectin is an edible polysaccharide that exists widely in the cell wall of plants. Our previous study has shown that pectin with various degrees of esterification displayed different effects on preventing acute colitis and regulating the gut microbiome and serum metabolome. This study aimed to further explore the differential effects of pectin with various degrees of esterification on mice simultaneously treated with a high-fat diet and low-dose antibiotics. The results showed that low-esterified pectin L102 improved the biomarkers of metabolic disorders including blood glucose and body weight. The high-esterified pectin H121 and the low-esterified pectin L13 ameliorated inflammatory markers such as superoxide dismutase (SOD). The enrichment of probiotic bacteria such as Lactobacillus by pectin L102, reduction of conditional pathogens such as Klebsiella by pectin L13, and changes in circulating metabolites like L-tryptophan and 3-indoleacrylate by all three types of pectins were detected. These data provide evidence for a differential effect of different types of pectin on the gut microbiota and metabolic health.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Pectinas/metabolismo , Antibacterianos/farmacologia , Camundongos Endogâmicos C57BL
20.
J Gastroenterol Hepatol ; 38(7): 1170-1180, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36941105

RESUMO

BACKGROUND AND AIM: Gastric cancer (GC) is a common malignant neoplasm in the gastrointestinal tract, accounting for high mortality globally. Treacle ribosome biogenesis factor 1 (TCOF1) is a nucleolar protein, which has been reported to be implicated in the pathogenesis of Treacher Collins syndrome and the development of several types of human cancer. However, the role of TCOF1 in GC is not known. METHODS: Immunohistochemistry was carried out to determine TCOF1 expression in GC tissues. Immunofluorescence, co-IP, and DNA fiber assays were conducted to investigate the function of TCOF1 in GC-derived BGC-823 and SGC-7901 cell lines. RESULTS: TCOF1 expression was aberrantly increased in GC tissues compared with adjacent normal tissues. In addition, we found that TCOF1 left the nucleolus and localized to R-loops (DNA/RNA hybrids) during S phase in GC cells. Furthermore, TCOF1 interacted with DDX5 and suppressed R-loop levels. Knockdown of TCOF1 led to increased nucleoplasmic R-loops specifically during S phase, which restrained DNA replication and cell proliferation. Overexpression of R-loop eraser RNaseH1 rescued the DNA synthesis defects and decreased DNA damage caused by TCOF1 depletion. CONCLUSION: These findings demonstrate a novel role of TCOF1 in maintaining GC cell proliferation by alleviating R-loop associated DNA replication stress.


Assuntos
Estruturas R-Loop , Neoplasias Gástricas , Humanos , Fosfoproteínas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/genética , Replicação do DNA , Proliferação de Células/genética , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...